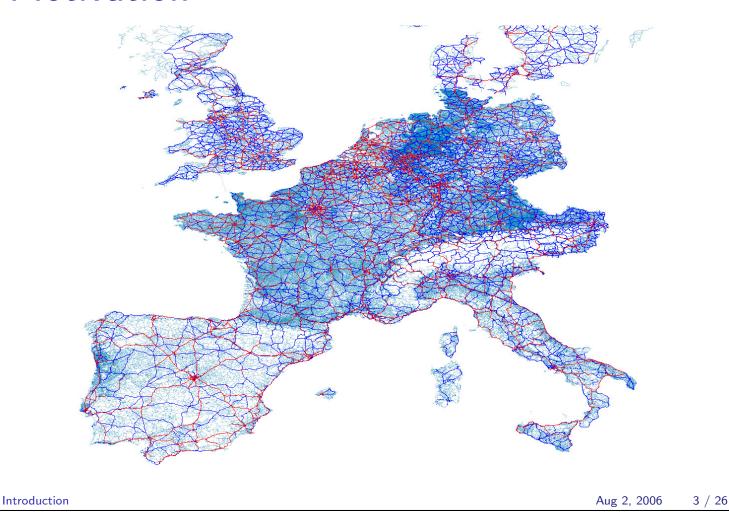

Study Thesis Visualisation of Very Large Graphs



Timo Bingmann Aug 2, 2006

Road Map

- 1 Introduction
 - Motivation: Street Network of Europe
 - Library Features
- 2 Architecture & Data Structures
 - Basic Architecture
 - Data Structures: R-Tree and Adjacency-Array
 - Queries: Serialization and Query Parser
- 3 Experiments
- 4 Demo

Motivation

Motivation

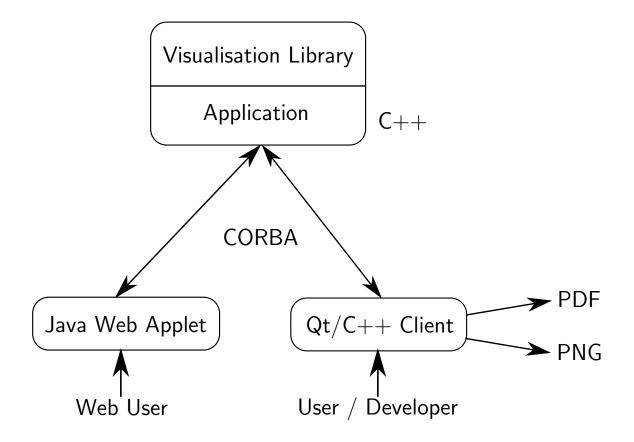
Visualisation of a street network of Europe.

Magnitudes

- About 18 million vertices and 22 million edges.
- Last picture: only about 3 million edges.

Application

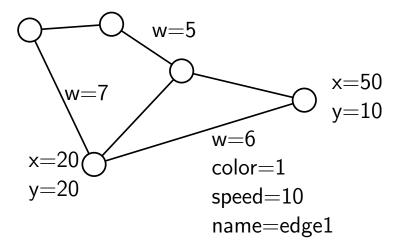
■ Route planning⇒ drawing of paths.


Introduction Aug 2, 2006 4 / 26

Visualisation Library

- Supports any two dimensional layouted graph.
- lacksquare Very fast query speeds: < 1 sec.
- Seamless integration into existing applications.
- Easily animate calculation mechanisms of algorithms.
- Fast and user-friendly browsing at presentations or via the Internet.
 - \Rightarrow Java web applet.
- High-quality exports of sections to PDF or PNG for presentations and papers.

Introduction Aug 2, 2006 5/26


Basic Architecture

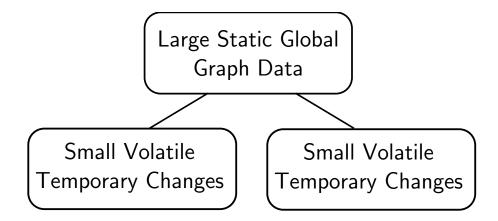
Architecture & Data Structures Aug 2, 2006 6 / 26

Supported Graphs

- Two dimensional layouted graph
- An additional z-axis (significance)
- Attributes on vertices and edges: coordinates and drawing parameters.
- Each attribute has a type like bool, char, integer or string.

Architecture & Data Structures Aug 2, 2006 7 / 26

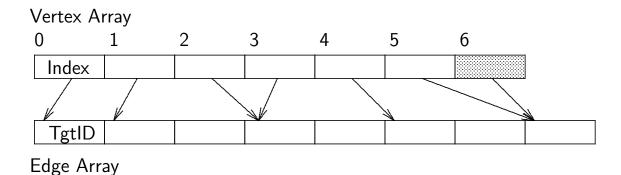
Analysis: Route Planning


The route planning algorithm operates on a street network.

- Large volume of unchanging graph data.
 Route planning never changes streets.
- Only small set of edges are marked by the algorithm.
- Marked edges are undone after viewing.
- ⇒ Separate static graph data from temporary changes.

Architecture & Data Structures

Aug 2, 2006


Separation

- Temporary changes are an overlay graph.
 - ⇒ efficient rollback of changes.
- Can apply compact data structures to static graph data. \Rightarrow adjacency array
- Support of multiple simultaneous clients.
 - ⇒ multi-threading support.

Architecture & Data Structures 9 / 26 Aug 2, 2006

Adjacency Array

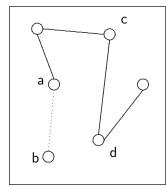
- Compact and easy to serialize.
- Array has to be rebuilt to apply changes.
- Attribute values are stored in a similar fashion.
- GraphLoader class for direct loading of arrays.

Architecture & Data Structures

Changelist

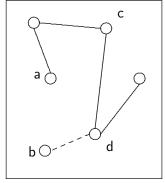
- Save temporary changes in flexible hash_map structures.
- Support convenient functions to change graph data:
 - addVertex(vid)
 - setVertexAttr(vid, attrid, value)
 - delVertex(vid)
 - addEdge(src, tgt)
 - setEdgeAttr(src, tgt, attrid, value)
 - delEdge(src, tgt)

Architecture & Data Structures

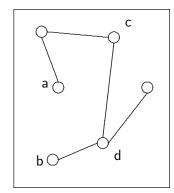

Aug 2, 2006

11 / 26

Animation Timeline


Changes can be animated by setting time frame markers in the sequence of function calls.

Frame 0


delEdge(a,b);
advanceTimeFrame();

Frame 1

setEdgeAttr(c,d,1,50);
addEdge(b,d);
advanceTimeFrame();

Frame n

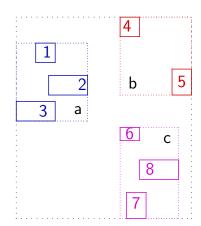
Index Structure

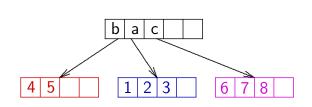
Required

Spatial index structure to accelerate range queries on the graph. Needs to support zooming and extraction in z-order.

Selected

R-Tree

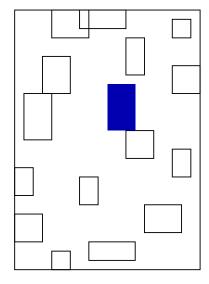

Architecture & Data Structures


Aug 2, 2006

13 / 26

R-Tree

- Based on B-Tree, but contains rectangles instead of numbers.
- Efficient for very large number of rectangles through high fan-out.

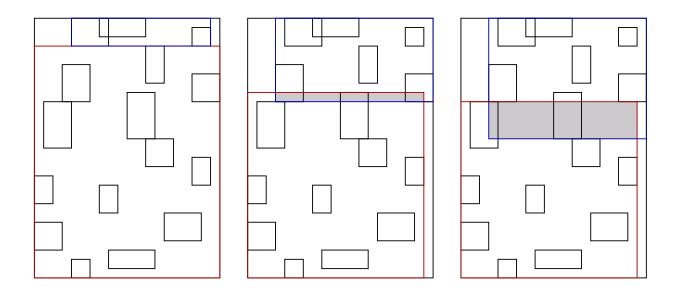


R-Tree Properties

- Define M maximum and m minimum number of rectangles in a node. Let $m \leq \frac{M}{2}$.
- Every node contains between *m* and *M* rectangles or it is the root.
- The root contains at least two rectangles or it is a leaf.
- Every rectangle in an inner node is the minimum bounding-box of the rectangles contained in its subtree.
- All leaves are on the same level.

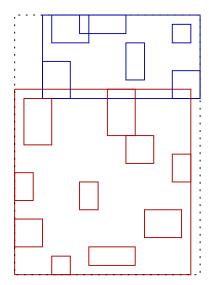
Architecture & Data Structures Aug 2, 2006 15 / 26

R-Tree Splitting



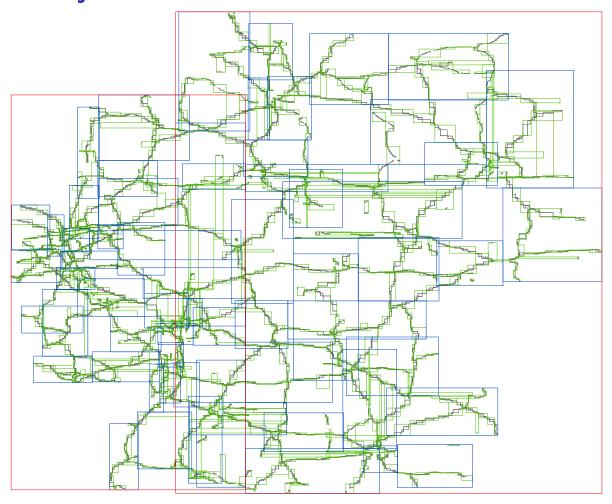
How to find a good split when a node overflows?

Architecture & Data Structures

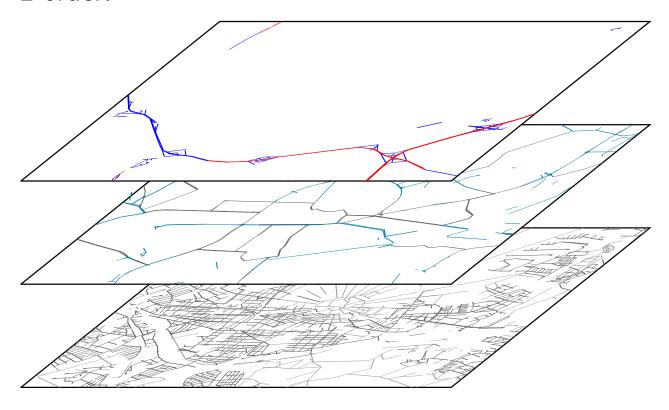

Aug 2, 2006

R-Tree Splitting

Architecture & Data Structures Aug 2, 2006 16 / 26


R-Tree Splitting

Library contains three R-tree Variants: R-Tree with quadratic Split, R-Tree with linear Split and R*-Tree.

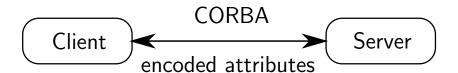

Architecture & Data Structures

Germany's Autobahnen

Multilevel R-Tree

Multiple R-Trees are used to support extraction in z-order.

getArea Query


- Vertices and edges are extracted and sent to the client in a serialized binary format.
- Change function calls are sent as an animation script.
- Visualisation library is not limited to CORBA as middleware.

Architecture & Data Structures

Aug 2, 2006

19 / 26

getArea Query

- Send only attributes required to draw the graph.
- Screen coordinate transformation is calculated on the server. Transfered as short.
- User can set a filter to limit the drawn edges.

Architecture & Data Structures

Aug 2, 2006

Parser

Server contains an arithmetic parser used to parse

attribute selection strings

$$(x - 5411) * 0.331$$
 cast short, ..., speed

and user filter strings.

edges: (speed < 5 and distance > 50) or (speed >= 5)

id	1	2	3	4	5	6
x	5641	5560	5755	5708	5638	5236
у	4845	4853	5002	4905	4998	4821
speed	5	6	1	3	4	2
distance	42	12	6	66	36	22
(x-5411)*0.331	76	49	113	98	75	-57

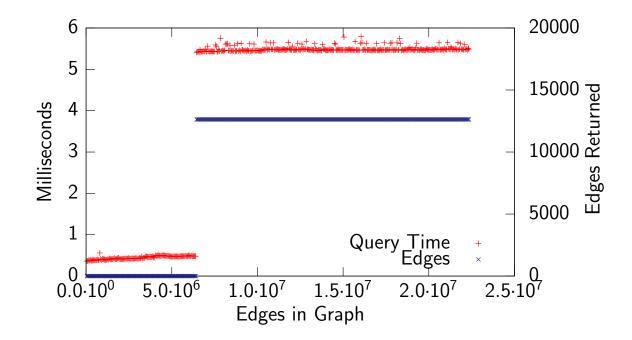
Architecture & Data Structures

Aug 2, 2006 21 / 26

Integration

Easy integration into existing programs.

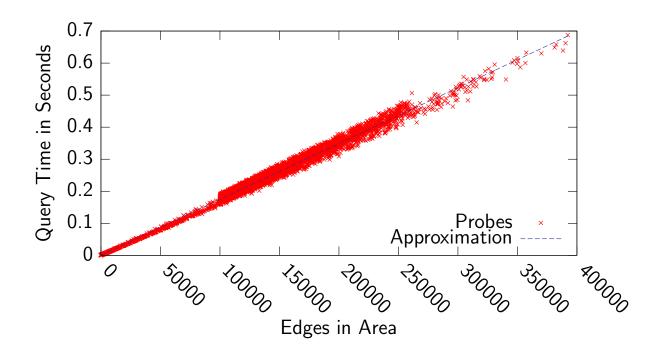
- Well-designed C++ namespace with lots of doxygen documentation.
- Animation is automatically created from sequence of function calls.
- Accelerated loading from snapshot data files containing the complete server state.


Map Sizes

Мар	Vertices	Base Graph	R-Trees	
	Edges	Attributes	Total	
Luxembourg	30 747	538 KB	517 KB	
	38 143	531 KB	1586 KB	
Belgium	463 795	8 269 KB	7 895 KB	
	594 715	8 142 KB	24 307 KB	
Netherlands	893 407	15 920 KB	15 174 KB	
	1 144 337	15 675 KB	46 769 KB	
Germany	4 378 447	77 210 KB	73 643 KB	
	5 504 454	76 111 KB	226 964 KB	
Europe	18 029 722	315 385 KB	301 322 KB	
	22 339 557	311 176 KB	927 883 KB	

Table: Map Sizes

Experiments Aug 2, 2006 23 / 26


Query Speed

- Street network of Europe built incrementally.
- Query time measured on a fixed view of Karlsruhe with surrounding cities.

Experiments Aug 2, 2006 24 / 26

Query Speed

Query time of 1000 random areas on the street network of Europe.

Experiments Aug 2, 2006 25 / 26

Demo

- Qt client with user-defined drawing rules.
- Java web client with integrated route planning algorithm.

http://algo2.iti.uni-karlsruhe.de/schultes/hwy/demo/

Demo Aug 2, 2006 26 / 26