stl_multimap.h

Go to the documentation of this file.
00001 // Multimap implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 3, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // Under Section 7 of GPL version 3, you are granted additional
00018 // permissions described in the GCC Runtime Library Exception, version
00019 // 3.1, as published by the Free Software Foundation.
00020 
00021 // You should have received a copy of the GNU General Public License and
00022 // a copy of the GCC Runtime Library Exception along with this program;
00023 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00024 // <http://www.gnu.org/licenses/>.
00025 
00026 /*
00027  *
00028  * Copyright (c) 1994
00029  * Hewlett-Packard Company
00030  *
00031  * Permission to use, copy, modify, distribute and sell this software
00032  * and its documentation for any purpose is hereby granted without fee,
00033  * provided that the above copyright notice appear in all copies and
00034  * that both that copyright notice and this permission notice appear
00035  * in supporting documentation.  Hewlett-Packard Company makes no
00036  * representations about the suitability of this software for any
00037  * purpose.  It is provided "as is" without express or implied warranty.
00038  *
00039  *
00040  * Copyright (c) 1996,1997
00041  * Silicon Graphics Computer Systems, Inc.
00042  *
00043  * Permission to use, copy, modify, distribute and sell this software
00044  * and its documentation for any purpose is hereby granted without fee,
00045  * provided that the above copyright notice appear in all copies and
00046  * that both that copyright notice and this permission notice appear
00047  * in supporting documentation.  Silicon Graphics makes no
00048  * representations about the suitability of this software for any
00049  * purpose.  It is provided "as is" without express or implied warranty.
00050  */
00051 
00052 /** @file stl_multimap.h
00053  *  This is an internal header file, included by other library headers.
00054  *  You should not attempt to use it directly.
00055  */
00056 
00057 #ifndef _STL_MULTIMAP_H
00058 #define _STL_MULTIMAP_H 1
00059 
00060 #include <bits/concept_check.h>
00061 #include <initializer_list>
00062 
00063 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
00064 
00065   /**
00066    *  @brief A standard container made up of (key,value) pairs, which can be
00067    *  retrieved based on a key, in logarithmic time.
00068    *
00069    *  @ingroup associative_containers
00070    *
00071    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00072    *  <a href="tables.html#66">reversible container</a>, and an
00073    *  <a href="tables.html#69">associative container</a> (using equivalent
00074    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
00075    *  is T, and the value_type is std::pair<const Key,T>.
00076    *
00077    *  Multimaps support bidirectional iterators.
00078    *
00079    *  The private tree data is declared exactly the same way for map and
00080    *  multimap; the distinction is made entirely in how the tree functions are
00081    *  called (*_unique versus *_equal, same as the standard).
00082   */
00083   template <typename _Key, typename _Tp,
00084         typename _Compare = std::less<_Key>,
00085         typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
00086     class multimap
00087     {
00088     public:
00089       typedef _Key                                          key_type;
00090       typedef _Tp                                           mapped_type;
00091       typedef std::pair<const _Key, _Tp>                    value_type;
00092       typedef _Compare                                      key_compare;
00093       typedef _Alloc                                        allocator_type;
00094 
00095     private:
00096       // concept requirements
00097       typedef typename _Alloc::value_type                   _Alloc_value_type;
00098       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00099       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00100                 _BinaryFunctionConcept)
00101       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)    
00102 
00103     public:
00104       class value_compare
00105       : public std::binary_function<value_type, value_type, bool>
00106       {
00107     friend class multimap<_Key, _Tp, _Compare, _Alloc>;
00108       protected:
00109     _Compare comp;
00110 
00111     value_compare(_Compare __c)
00112     : comp(__c) { }
00113 
00114       public:
00115     bool operator()(const value_type& __x, const value_type& __y) const
00116     { return comp(__x.first, __y.first); }
00117       };
00118 
00119     private:
00120       /// This turns a red-black tree into a [multi]map.
00121       typedef typename _Alloc::template rebind<value_type>::other 
00122         _Pair_alloc_type;
00123 
00124       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
00125                key_compare, _Pair_alloc_type> _Rep_type;
00126       /// The actual tree structure.
00127       _Rep_type _M_t;
00128 
00129     public:
00130       // many of these are specified differently in ISO, but the following are
00131       // "functionally equivalent"
00132       typedef typename _Pair_alloc_type::pointer         pointer;
00133       typedef typename _Pair_alloc_type::const_pointer   const_pointer;
00134       typedef typename _Pair_alloc_type::reference       reference;
00135       typedef typename _Pair_alloc_type::const_reference const_reference;
00136       typedef typename _Rep_type::iterator               iterator;
00137       typedef typename _Rep_type::const_iterator         const_iterator;
00138       typedef typename _Rep_type::size_type              size_type;
00139       typedef typename _Rep_type::difference_type        difference_type;
00140       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
00141       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00142 
00143       // [23.3.2] construct/copy/destroy
00144       // (get_allocator() is also listed in this section)
00145       /**
00146        *  @brief  Default constructor creates no elements.
00147        */
00148       multimap()
00149       : _M_t() { }
00150 
00151       /**
00152        *  @brief  Creates a %multimap with no elements.
00153        *  @param  comp  A comparison object.
00154        *  @param  a  An allocator object.
00155        */
00156       explicit
00157       multimap(const _Compare& __comp,
00158            const allocator_type& __a = allocator_type())
00159       : _M_t(__comp, __a) { }
00160 
00161       /**
00162        *  @brief  %Multimap copy constructor.
00163        *  @param  x  A %multimap of identical element and allocator types.
00164        *
00165        *  The newly-created %multimap uses a copy of the allocation object
00166        *  used by @a x.
00167        */
00168       multimap(const multimap& __x)
00169       : _M_t(__x._M_t) { }
00170 
00171 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00172       /**
00173        *  @brief  %Multimap move constructor.
00174        *  @param   x  A %multimap of identical element and allocator types.
00175        *
00176        *  The newly-created %multimap contains the exact contents of @a x.
00177        *  The contents of @a x are a valid, but unspecified %multimap.
00178        */
00179       multimap(multimap&& __x)
00180       : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
00181 
00182       /**
00183        *  @brief  Builds a %multimap from an initializer_list.
00184        *  @param  l  An initializer_list.
00185        *  @param  comp  A comparison functor.
00186        *  @param  a  An allocator object.
00187        *
00188        *  Create a %multimap consisting of copies of the elements from
00189        *  the initializer_list.  This is linear in N if the list is already
00190        *  sorted, and NlogN otherwise (where N is @a __l.size()).
00191        */
00192       multimap(initializer_list<value_type> __l,
00193            const _Compare& __comp = _Compare(),
00194            const allocator_type& __a = allocator_type())
00195       : _M_t(__comp, __a)
00196       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
00197 #endif
00198 
00199       /**
00200        *  @brief  Builds a %multimap from a range.
00201        *  @param  first  An input iterator.
00202        *  @param  last  An input iterator.
00203        *
00204        *  Create a %multimap consisting of copies of the elements from
00205        *  [first,last).  This is linear in N if the range is already sorted,
00206        *  and NlogN otherwise (where N is distance(first,last)).
00207        */
00208       template<typename _InputIterator>
00209         multimap(_InputIterator __first, _InputIterator __last)
00210     : _M_t()
00211         { _M_t._M_insert_equal(__first, __last); }
00212 
00213       /**
00214        *  @brief  Builds a %multimap from a range.
00215        *  @param  first  An input iterator.
00216        *  @param  last  An input iterator.
00217        *  @param  comp  A comparison functor.
00218        *  @param  a  An allocator object.
00219        *
00220        *  Create a %multimap consisting of copies of the elements from
00221        *  [first,last).  This is linear in N if the range is already sorted,
00222        *  and NlogN otherwise (where N is distance(first,last)).
00223        */
00224       template<typename _InputIterator>
00225         multimap(_InputIterator __first, _InputIterator __last,
00226          const _Compare& __comp,
00227          const allocator_type& __a = allocator_type())
00228         : _M_t(__comp, __a)
00229         { _M_t._M_insert_equal(__first, __last); }
00230 
00231       // FIXME There is no dtor declared, but we should have something generated
00232       // by Doxygen.  I don't know what tags to add to this paragraph to make
00233       // that happen:
00234       /**
00235        *  The dtor only erases the elements, and note that if the elements
00236        *  themselves are pointers, the pointed-to memory is not touched in any
00237        *  way.  Managing the pointer is the user's responsibility.
00238        */
00239 
00240       /**
00241        *  @brief  %Multimap assignment operator.
00242        *  @param  x  A %multimap of identical element and allocator types.
00243        *
00244        *  All the elements of @a x are copied, but unlike the copy constructor,
00245        *  the allocator object is not copied.
00246        */
00247       multimap&
00248       operator=(const multimap& __x)
00249       {
00250     _M_t = __x._M_t;
00251     return *this;
00252       }
00253 
00254 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00255       /**
00256        *  @brief  %Multimap move assignment operator.
00257        *  @param  x  A %multimap of identical element and allocator types.
00258        *
00259        *  The contents of @a x are moved into this multimap (without copying).
00260        *  @a x is a valid, but unspecified multimap.
00261        */
00262       multimap&
00263       operator=(multimap&& __x)
00264       {
00265     // NB: DR 675.
00266     this->clear();
00267     this->swap(__x); 
00268     return *this;
00269       }
00270 
00271       /**
00272        *  @brief  %Multimap list assignment operator.
00273        *  @param  l  An initializer_list.
00274        *
00275        *  This function fills a %multimap with copies of the elements
00276        *  in the initializer list @a l.
00277        *
00278        *  Note that the assignment completely changes the %multimap and
00279        *  that the resulting %multimap's size is the same as the number
00280        *  of elements assigned.  Old data may be lost.
00281        */
00282       multimap&
00283       operator=(initializer_list<value_type> __l)
00284       {
00285     this->clear();
00286     this->insert(__l.begin(), __l.end());
00287     return *this;
00288       }
00289 #endif
00290 
00291       /// Get a copy of the memory allocation object.
00292       allocator_type
00293       get_allocator() const
00294       { return _M_t.get_allocator(); }
00295 
00296       // iterators
00297       /**
00298        *  Returns a read/write iterator that points to the first pair in the
00299        *  %multimap.  Iteration is done in ascending order according to the
00300        *  keys.
00301        */
00302       iterator
00303       begin()
00304       { return _M_t.begin(); }
00305 
00306       /**
00307        *  Returns a read-only (constant) iterator that points to the first pair
00308        *  in the %multimap.  Iteration is done in ascending order according to
00309        *  the keys.
00310        */
00311       const_iterator
00312       begin() const
00313       { return _M_t.begin(); }
00314 
00315       /**
00316        *  Returns a read/write iterator that points one past the last pair in
00317        *  the %multimap.  Iteration is done in ascending order according to the
00318        *  keys.
00319        */
00320       iterator
00321       end()
00322       { return _M_t.end(); }
00323 
00324       /**
00325        *  Returns a read-only (constant) iterator that points one past the last
00326        *  pair in the %multimap.  Iteration is done in ascending order according
00327        *  to the keys.
00328        */
00329       const_iterator
00330       end() const
00331       { return _M_t.end(); }
00332 
00333       /**
00334        *  Returns a read/write reverse iterator that points to the last pair in
00335        *  the %multimap.  Iteration is done in descending order according to the
00336        *  keys.
00337        */
00338       reverse_iterator
00339       rbegin()
00340       { return _M_t.rbegin(); }
00341 
00342       /**
00343        *  Returns a read-only (constant) reverse iterator that points to the
00344        *  last pair in the %multimap.  Iteration is done in descending order
00345        *  according to the keys.
00346        */
00347       const_reverse_iterator
00348       rbegin() const
00349       { return _M_t.rbegin(); }
00350 
00351       /**
00352        *  Returns a read/write reverse iterator that points to one before the
00353        *  first pair in the %multimap.  Iteration is done in descending order
00354        *  according to the keys.
00355        */
00356       reverse_iterator
00357       rend()
00358       { return _M_t.rend(); }
00359 
00360       /**
00361        *  Returns a read-only (constant) reverse iterator that points to one
00362        *  before the first pair in the %multimap.  Iteration is done in
00363        *  descending order according to the keys.
00364        */
00365       const_reverse_iterator
00366       rend() const
00367       { return _M_t.rend(); }
00368 
00369 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00370       /**
00371        *  Returns a read-only (constant) iterator that points to the first pair
00372        *  in the %multimap.  Iteration is done in ascending order according to
00373        *  the keys.
00374        */
00375       const_iterator
00376       cbegin() const
00377       { return _M_t.begin(); }
00378 
00379       /**
00380        *  Returns a read-only (constant) iterator that points one past the last
00381        *  pair in the %multimap.  Iteration is done in ascending order according
00382        *  to the keys.
00383        */
00384       const_iterator
00385       cend() const
00386       { return _M_t.end(); }
00387 
00388       /**
00389        *  Returns a read-only (constant) reverse iterator that points to the
00390        *  last pair in the %multimap.  Iteration is done in descending order
00391        *  according to the keys.
00392        */
00393       const_reverse_iterator
00394       crbegin() const
00395       { return _M_t.rbegin(); }
00396 
00397       /**
00398        *  Returns a read-only (constant) reverse iterator that points to one
00399        *  before the first pair in the %multimap.  Iteration is done in
00400        *  descending order according to the keys.
00401        */
00402       const_reverse_iterator
00403       crend() const
00404       { return _M_t.rend(); }
00405 #endif
00406 
00407       // capacity
00408       /** Returns true if the %multimap is empty.  */
00409       bool
00410       empty() const
00411       { return _M_t.empty(); }
00412 
00413       /** Returns the size of the %multimap.  */
00414       size_type
00415       size() const
00416       { return _M_t.size(); }
00417 
00418       /** Returns the maximum size of the %multimap.  */
00419       size_type
00420       max_size() const
00421       { return _M_t.max_size(); }
00422 
00423       // modifiers
00424       /**
00425        *  @brief Inserts a std::pair into the %multimap.
00426        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
00427        *             of pairs).
00428        *  @return An iterator that points to the inserted (key,value) pair.
00429        *
00430        *  This function inserts a (key, value) pair into the %multimap.
00431        *  Contrary to a std::map the %multimap does not rely on unique keys and
00432        *  thus multiple pairs with the same key can be inserted.
00433        *
00434        *  Insertion requires logarithmic time.
00435        */
00436       iterator
00437       insert(const value_type& __x)
00438       { return _M_t._M_insert_equal(__x); }
00439 
00440       /**
00441        *  @brief Inserts a std::pair into the %multimap.
00442        *  @param  position  An iterator that serves as a hint as to where the
00443        *                    pair should be inserted.
00444        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
00445        *             of pairs).
00446        *  @return An iterator that points to the inserted (key,value) pair.
00447        *
00448        *  This function inserts a (key, value) pair into the %multimap.
00449        *  Contrary to a std::map the %multimap does not rely on unique keys and
00450        *  thus multiple pairs with the same key can be inserted.
00451        *  Note that the first parameter is only a hint and can potentially
00452        *  improve the performance of the insertion process.  A bad hint would
00453        *  cause no gains in efficiency.
00454        *
00455        *  For more on "hinting," see:
00456        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
00457        *
00458        *  Insertion requires logarithmic time (if the hint is not taken).
00459        */
00460       iterator
00461       insert(iterator __position, const value_type& __x)
00462       { return _M_t._M_insert_equal_(__position, __x); }
00463 
00464       /**
00465        *  @brief A template function that attempts to insert a range
00466        *  of elements.
00467        *  @param  first  Iterator pointing to the start of the range to be
00468        *                 inserted.
00469        *  @param  last  Iterator pointing to the end of the range.
00470        *
00471        *  Complexity similar to that of the range constructor.
00472        */
00473       template<typename _InputIterator>
00474         void
00475         insert(_InputIterator __first, _InputIterator __last)
00476         { _M_t._M_insert_equal(__first, __last); }
00477 
00478 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00479       /**
00480        *  @brief Attempts to insert a list of std::pairs into the %multimap.
00481        *  @param  list  A std::initializer_list<value_type> of pairs to be
00482        *                inserted.
00483        *
00484        *  Complexity similar to that of the range constructor.
00485        */
00486       void
00487       insert(initializer_list<value_type> __l)
00488       { this->insert(__l.begin(), __l.end()); }
00489 #endif
00490 
00491       /**
00492        *  @brief Erases an element from a %multimap.
00493        *  @param  position  An iterator pointing to the element to be erased.
00494        *
00495        *  This function erases an element, pointed to by the given iterator,
00496        *  from a %multimap.  Note that this function only erases the element,
00497        *  and that if the element is itself a pointer, the pointed-to memory is
00498        *  not touched in any way.  Managing the pointer is the user's
00499        *  responsibility.
00500        */
00501       void
00502       erase(iterator __position)
00503       { _M_t.erase(__position); }
00504 
00505       /**
00506        *  @brief Erases elements according to the provided key.
00507        *  @param  x  Key of element to be erased.
00508        *  @return  The number of elements erased.
00509        *
00510        *  This function erases all elements located by the given key from a
00511        *  %multimap.
00512        *  Note that this function only erases the element, and that if
00513        *  the element is itself a pointer, the pointed-to memory is not touched
00514        *  in any way.  Managing the pointer is the user's responsibility.
00515        */
00516       size_type
00517       erase(const key_type& __x)
00518       { return _M_t.erase(__x); }
00519 
00520       /**
00521        *  @brief Erases a [first,last) range of elements from a %multimap.
00522        *  @param  first  Iterator pointing to the start of the range to be
00523        *                 erased.
00524        *  @param  last  Iterator pointing to the end of the range to be erased.
00525        *
00526        *  This function erases a sequence of elements from a %multimap.
00527        *  Note that this function only erases the elements, and that if
00528        *  the elements themselves are pointers, the pointed-to memory is not
00529        *  touched in any way.  Managing the pointer is the user's responsibility.
00530        */
00531       void
00532       erase(iterator __first, iterator __last)
00533       { _M_t.erase(__first, __last); }
00534 
00535       /**
00536        *  @brief  Swaps data with another %multimap.
00537        *  @param  x  A %multimap of the same element and allocator types.
00538        *
00539        *  This exchanges the elements between two multimaps in constant time.
00540        *  (It is only swapping a pointer, an integer, and an instance of
00541        *  the @c Compare type (which itself is often stateless and empty), so it
00542        *  should be quite fast.)
00543        *  Note that the global std::swap() function is specialized such that
00544        *  std::swap(m1,m2) will feed to this function.
00545        */
00546       void
00547 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00548       swap(multimap&& __x)
00549 #else
00550       swap(multimap& __x)
00551 #endif
00552       { _M_t.swap(__x._M_t); }
00553 
00554       /**
00555        *  Erases all elements in a %multimap.  Note that this function only
00556        *  erases the elements, and that if the elements themselves are pointers,
00557        *  the pointed-to memory is not touched in any way.  Managing the pointer
00558        *  is the user's responsibility.
00559        */
00560       void
00561       clear()
00562       { _M_t.clear(); }
00563 
00564       // observers
00565       /**
00566        *  Returns the key comparison object out of which the %multimap
00567        *  was constructed.
00568        */
00569       key_compare
00570       key_comp() const
00571       { return _M_t.key_comp(); }
00572 
00573       /**
00574        *  Returns a value comparison object, built from the key comparison
00575        *  object out of which the %multimap was constructed.
00576        */
00577       value_compare
00578       value_comp() const
00579       { return value_compare(_M_t.key_comp()); }
00580 
00581       // multimap operations
00582       /**
00583        *  @brief Tries to locate an element in a %multimap.
00584        *  @param  x  Key of (key, value) pair to be located.
00585        *  @return  Iterator pointing to sought-after element,
00586        *           or end() if not found.
00587        *
00588        *  This function takes a key and tries to locate the element with which
00589        *  the key matches.  If successful the function returns an iterator
00590        *  pointing to the sought after %pair.  If unsuccessful it returns the
00591        *  past-the-end ( @c end() ) iterator.
00592        */
00593       iterator
00594       find(const key_type& __x)
00595       { return _M_t.find(__x); }
00596 
00597       /**
00598        *  @brief Tries to locate an element in a %multimap.
00599        *  @param  x  Key of (key, value) pair to be located.
00600        *  @return  Read-only (constant) iterator pointing to sought-after
00601        *           element, or end() if not found.
00602        *
00603        *  This function takes a key and tries to locate the element with which
00604        *  the key matches.  If successful the function returns a constant
00605        *  iterator pointing to the sought after %pair.  If unsuccessful it
00606        *  returns the past-the-end ( @c end() ) iterator.
00607        */
00608       const_iterator
00609       find(const key_type& __x) const
00610       { return _M_t.find(__x); }
00611 
00612       /**
00613        *  @brief Finds the number of elements with given key.
00614        *  @param  x  Key of (key, value) pairs to be located.
00615        *  @return Number of elements with specified key.
00616        */
00617       size_type
00618       count(const key_type& __x) const
00619       { return _M_t.count(__x); }
00620 
00621       /**
00622        *  @brief Finds the beginning of a subsequence matching given key.
00623        *  @param  x  Key of (key, value) pair to be located.
00624        *  @return  Iterator pointing to first element equal to or greater
00625        *           than key, or end().
00626        *
00627        *  This function returns the first element of a subsequence of elements
00628        *  that matches the given key.  If unsuccessful it returns an iterator
00629        *  pointing to the first element that has a greater value than given key
00630        *  or end() if no such element exists.
00631        */
00632       iterator
00633       lower_bound(const key_type& __x)
00634       { return _M_t.lower_bound(__x); }
00635 
00636       /**
00637        *  @brief Finds the beginning of a subsequence matching given key.
00638        *  @param  x  Key of (key, value) pair to be located.
00639        *  @return  Read-only (constant) iterator pointing to first element
00640        *           equal to or greater than key, or end().
00641        *
00642        *  This function returns the first element of a subsequence of elements
00643        *  that matches the given key.  If unsuccessful the iterator will point
00644        *  to the next greatest element or, if no such greater element exists, to
00645        *  end().
00646        */
00647       const_iterator
00648       lower_bound(const key_type& __x) const
00649       { return _M_t.lower_bound(__x); }
00650 
00651       /**
00652        *  @brief Finds the end of a subsequence matching given key.
00653        *  @param  x  Key of (key, value) pair to be located.
00654        *  @return Iterator pointing to the first element
00655        *          greater than key, or end().
00656        */
00657       iterator
00658       upper_bound(const key_type& __x)
00659       { return _M_t.upper_bound(__x); }
00660 
00661       /**
00662        *  @brief Finds the end of a subsequence matching given key.
00663        *  @param  x  Key of (key, value) pair to be located.
00664        *  @return  Read-only (constant) iterator pointing to first iterator
00665        *           greater than key, or end().
00666        */
00667       const_iterator
00668       upper_bound(const key_type& __x) const
00669       { return _M_t.upper_bound(__x); }
00670 
00671       /**
00672        *  @brief Finds a subsequence matching given key.
00673        *  @param  x  Key of (key, value) pairs to be located.
00674        *  @return  Pair of iterators that possibly points to the subsequence
00675        *           matching given key.
00676        *
00677        *  This function is equivalent to
00678        *  @code
00679        *    std::make_pair(c.lower_bound(val),
00680        *                   c.upper_bound(val))
00681        *  @endcode
00682        *  (but is faster than making the calls separately).
00683        */
00684       std::pair<iterator, iterator>
00685       equal_range(const key_type& __x)
00686       { return _M_t.equal_range(__x); }
00687 
00688       /**
00689        *  @brief Finds a subsequence matching given key.
00690        *  @param  x  Key of (key, value) pairs to be located.
00691        *  @return  Pair of read-only (constant) iterators that possibly points
00692        *           to the subsequence matching given key.
00693        *
00694        *  This function is equivalent to
00695        *  @code
00696        *    std::make_pair(c.lower_bound(val),
00697        *                   c.upper_bound(val))
00698        *  @endcode
00699        *  (but is faster than making the calls separately).
00700        */
00701       std::pair<const_iterator, const_iterator>
00702       equal_range(const key_type& __x) const
00703       { return _M_t.equal_range(__x); }
00704 
00705       template<typename _K1, typename _T1, typename _C1, typename _A1>
00706         friend bool
00707         operator==(const multimap<_K1, _T1, _C1, _A1>&,
00708            const multimap<_K1, _T1, _C1, _A1>&);
00709 
00710       template<typename _K1, typename _T1, typename _C1, typename _A1>
00711         friend bool
00712         operator<(const multimap<_K1, _T1, _C1, _A1>&,
00713           const multimap<_K1, _T1, _C1, _A1>&);
00714   };
00715 
00716   /**
00717    *  @brief  Multimap equality comparison.
00718    *  @param  x  A %multimap.
00719    *  @param  y  A %multimap of the same type as @a x.
00720    *  @return  True iff the size and elements of the maps are equal.
00721    *
00722    *  This is an equivalence relation.  It is linear in the size of the
00723    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
00724    *  and if corresponding elements compare equal.
00725   */
00726   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00727     inline bool
00728     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00729                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00730     { return __x._M_t == __y._M_t; }
00731 
00732   /**
00733    *  @brief  Multimap ordering relation.
00734    *  @param  x  A %multimap.
00735    *  @param  y  A %multimap of the same type as @a x.
00736    *  @return  True iff @a x is lexicographically less than @a y.
00737    *
00738    *  This is a total ordering relation.  It is linear in the size of the
00739    *  multimaps.  The elements must be comparable with @c <.
00740    *
00741    *  See std::lexicographical_compare() for how the determination is made.
00742   */
00743   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00744     inline bool
00745     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00746               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00747     { return __x._M_t < __y._M_t; }
00748 
00749   /// Based on operator==
00750   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00751     inline bool
00752     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00753                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00754     { return !(__x == __y); }
00755 
00756   /// Based on operator<
00757   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00758     inline bool
00759     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00760               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00761     { return __y < __x; }
00762 
00763   /// Based on operator<
00764   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00765     inline bool
00766     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00767                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00768     { return !(__y < __x); }
00769 
00770   /// Based on operator<
00771   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00772     inline bool
00773     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00774                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00775     { return !(__x < __y); }
00776 
00777   /// See std::multimap::swap().
00778   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00779     inline void
00780     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00781          multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00782     { __x.swap(__y); }
00783 
00784 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00785   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00786     inline void
00787     swap(multimap<_Key, _Tp, _Compare, _Alloc>&& __x,
00788          multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00789     { __x.swap(__y); }
00790 
00791   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00792     inline void
00793     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00794          multimap<_Key, _Tp, _Compare, _Alloc>&& __y)
00795     { __x.swap(__y); }
00796 #endif
00797 
00798 _GLIBCXX_END_NESTED_NAMESPACE
00799 
00800 #endif /* _STL_MULTIMAP_H */

Generated on Thu Jul 23 21:16:21 2009 for libstdc++ by  doxygen 1.5.8