The QMatrix class specifies 2D transformations of a coordinate system. More...

#include <QMatrix>

**This class is obsolete.** It is provided to keep old source code working. We strongly advise against using it in new code.

QMatrix () | |

QMatrix ( qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy ) | |

QMatrix ( const QMatrix & matrix ) | |

qreal | m11 () const |

qreal | m12 () const |

qreal | m21 () const |

qreal | m22 () const |

qreal | determinant () const |

qreal | dx () const |

qreal | dy () const |

QMatrix | inverted ( bool * invertible = 0 ) const |

bool | isIdentity () const |

bool | isInvertible () const |

void | map ( qreal x, qreal y, qreal * tx, qreal * ty ) const |

void | map ( int x, int y, int * tx, int * ty ) const |

QPointF | map ( const QPointF & point ) const |

QPoint | map ( const QPoint & point ) const |

QLineF | map ( const QLineF & line ) const |

QLine | map ( const QLine & line ) const |

QPolygonF | map ( const QPolygonF & polygon ) const |

QPolygon | map ( const QPolygon & polygon ) const |

QRegion | map ( const QRegion & region ) const |

QPainterPath | map ( const QPainterPath & path ) const |

QRectF | mapRect ( const QRectF & rectangle ) const |

QRect | mapRect ( const QRect & rectangle ) const |

QPolygon | mapToPolygon ( const QRect & rectangle ) const |

void | reset () |

QMatrix & | rotate ( qreal degrees ) |

QMatrix & | scale ( qreal sx, qreal sy ) |

void | setMatrix ( qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy ) |

QMatrix & | shear ( qreal sh, qreal sv ) |

QMatrix & | translate ( qreal dx, qreal dy ) |

operator QVariant () const | |

bool | operator!= ( const QMatrix & matrix ) const |

QMatrix | operator* ( const QMatrix & matrix ) const |

QMatrix & | operator*= ( const QMatrix & matrix ) |

QMatrix & | operator= ( const QMatrix & matrix ) |

bool | operator== ( const QMatrix & matrix ) const |

bool | qFuzzyCompare ( const QMatrix & m1, const QMatrix & m2 ) |

QPoint | operator* ( const QPoint & point, const QMatrix & matrix ) |

QPointF | operator* ( const QPointF & point, const QMatrix & matrix ) |

QLineF | operator* ( const QLineF & line, const QMatrix & matrix ) |

QLine | operator* ( const QLine & line, const QMatrix & matrix ) |

QPolygon | operator* ( const QPolygon & polygon, const QMatrix & matrix ) |

QPolygonF | operator* ( const QPolygonF & polygon, const QMatrix & matrix ) |

QRegion | operator* ( const QRegion & region, const QMatrix & matrix ) |

QPainterPath | operator* ( const QPainterPath & path, const QMatrix & matrix ) |

QDataStream & | operator<< ( QDataStream & stream, const QMatrix & matrix ) |

QDataStream & | operator>> ( QDataStream & stream, QMatrix & matrix ) |

The QMatrix class specifies 2D transformations of a coordinate system.

A matrix specifies how to translate, scale, shear or rotate the coordinate system, and is typically used when rendering graphics. QMatrix, in contrast to QTransform, does not allow perspective transformations. QTransform is the recommended transformation class in Qt.

A QMatrix object can be built using the setMatrix(), scale(), rotate(), translate() and shear() functions. Alternatively, it can be built by applying basic matrix operations. The matrix can also be defined when constructed, and it can be reset to the identity matrix (the default) using the reset() function.

The QMatrix class supports mapping of graphic primitives: A given point, line, polygon, region, or painter path can be mapped to the coordinate system defined by *this* matrix using the map() function. In case of a rectangle, its coordinates can be transformed using the mapRect() function. A rectangle can also be transformed into a *polygon* (mapped to the coordinate system defined by *this* matrix), using the mapToPolygon() function.

QMatrix provides the isIdentity() function which returns true if the matrix is the identity matrix, and the isInvertible() function which returns true if the matrix is non-singular (i.e. AB = BA = I). The inverted() function returns an inverted copy of *this* matrix if it is invertible (otherwise it returns the identity matrix). In addition, QMatrix provides the determinant() function returning the matrix's determinant.

Finally, the QMatrix class supports matrix multiplication, and objects of the class can be streamed as well as compared.

When rendering graphics, the matrix defines the transformations but the actual transformation is performed by the drawing routines in QPainter.

By default, QPainter operates on the associated device's own coordinate system. The standard coordinate system of a QPaintDevice has its origin located at the top-left position. The *x* values increase to the right; *y* values increase downward. For a complete description, see the coordinate system documentation.

QPainter has functions to translate, scale, shear and rotate the coordinate system without using a QMatrix. For example:

void SimpleTransformation::paintEvent(QPaintEvent *) { QPainter painter(this); painter.setPen(QPen(Qt::blue, 1, Qt::DashLine)); painter.drawRect(0, 0, 100, 100); painter.rotate(45); painter.setFont(QFont("Helvetica", 24)); painter.setPen(QPen(Qt::black, 1)); painter.drawText(20, 10, "QMatrix"); } |

Although these functions are very convenient, it can be more efficient to build a QMatrix and call QPainter::setMatrix() if you want to perform more than a single transform operation. For example:

void CombinedTransformation::paintEvent(QPaintEvent *) { QPainter painter(this); painter.setPen(QPen(Qt::blue, 1, Qt::DashLine)); painter.drawRect(0, 0, 100, 100); QMatrix matrix; matrix.translate(50, 50); matrix.rotate(45); matrix.scale(0.5, 1.0); painter.setMatrix(matrix); painter.setFont(QFont("Helvetica", 24)); painter.setPen(QPen(Qt::black, 1)); painter.drawText(20, 10, "QMatrix"); } |

A QMatrix object contains a 3 x 3 matrix. The `dx` and `dy` elements specify horizontal and vertical translation. The `m11` and `m22` elements specify horizontal and vertical scaling. And finally, the `m21` and `m12` elements specify horizontal and vertical *shearing*.

QMatrix transforms a point in the plane to another point using the following formulas:

x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy

The point *(x, y)* is the original point, and *(x', y')* is the transformed point. *(x', y')* can be transformed back to *(x, y)* by performing the same operation on the inverted() matrix.

The various matrix elements can be set when constructing the matrix, or by using the setMatrix() function later on. They can also be manipulated using the translate(), rotate(), scale() and shear() convenience functions, The currently set values can be retrieved using the m11(), m12(), m21(), m22(), dx() and dy() functions.

Translation is the simplest transformation. Setting `dx` and `dy` will move the coordinate system `dx` units along the X axis and `dy` units along the Y axis. Scaling can be done by setting `m11` and `m22`. For example, setting `m11` to 2 and `m22` to 1.5 will double the height and increase the width by 50%. The identity matrix has `m11` and `m22` set to 1 (all others are set to 0) mapping a point to itself. Shearing is controlled by `m12` and `m21`. Setting these elements to values different from zero will twist the coordinate system. Rotation is achieved by carefully setting both the shearing factors and the scaling factors.

Here's the combined transformations example using basic matrix operations:

void BasicOperations::paintEvent(QPaintEvent *) { double pi = 3.14; double a = pi/180 * 45.0; double sina = sin(a); double cosa = cos(a); QMatrix translationMatrix(1, 0, 0, 1, 50.0, 50.0); QMatrix rotationMatrix(cosa, sina, -sina, cosa, 0, 0); QMatrix scalingMatrix(0.5, 0, 0, 1.0, 0, 0); QMatrix matrix; matrix = scalingMatrix * rotationMatrix * translationMatrix; QPainter painter(this); painter.setPen(QPen(Qt::blue, 1, Qt::DashLine)); painter.drawRect(0, 0, 100, 100); painter.setMatrix(matrix); painter.setFont(QFont("Helvetica", 24)); painter.setPen(QPen(Qt::black, 1)); painter.drawText(20, 10, "QMatrix"); } |

See also QPainter, QTransform, Coordinate System, Affine Transformations Demo, and Transformations Example.

Constructs an identity matrix.

All elements are set to zero except `m11` and `m22` (specifying the scale), which are set to 1.

See also reset().

Constructs a matrix with the elements, *m11*, *m12*, *m21*, *m22*, *dx* and *dy*.

See also setMatrix().

Constructs a matrix that is a copy of the given *matrix*.

Returns the horizontal scaling factor.

See also scale() and Basic Matrix Operations.

Returns the vertical shearing factor.

See also shear() and Basic Matrix Operations.

Returns the horizontal shearing factor.

See also shear() and Basic Matrix Operations.

Returns the vertical scaling factor.

See also scale() and Basic Matrix Operations.

Returns the matrix's determinant.

This function was introduced in Qt 4.6.

Returns the horizontal translation factor.

See also translate() and Basic Matrix Operations.

Returns the vertical translation factor.

See also translate() and Basic Matrix Operations.

Returns an inverted copy of this matrix.

If the matrix is singular (not invertible), the returned matrix is the identity matrix. If *invertible* is valid (i.e. not 0), its value is set to true if the matrix is invertible, otherwise it is set to false.

See also isInvertible().

Returns true if the matrix is the identity matrix, otherwise returns false.

See also reset().

Returns true if the matrix is invertible, otherwise returns false.

See also inverted().

Maps the given coordinates *x* and *y* into the coordinate system defined by this matrix. The resulting values are put in **tx* and **ty*, respectively.

The coordinates are transformed using the following formulas:

x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy

The point (x, y) is the original point, and (x', y') is the transformed point.

See also Basic Matrix Operations.

This is an overloaded function.

Maps the given coordinates *x* and *y* into the coordinate system defined by this matrix. The resulting values are put in **tx* and **ty*, respectively. Note that the transformed coordinates are rounded to the nearest integer.

This is an overloaded function.

Creates and returns a QPointF object that is a copy of the given *point*, mapped into the coordinate system defined by this matrix.

This is an overloaded function.

Creates and returns a QPoint object that is a copy of the given *point*, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

This is an overloaded function.

Creates and returns a QLineF object that is a copy of the given *line*, mapped into the coordinate system defined by this matrix.

This is an overloaded function.

Creates and returns a QLine object that is a copy of the given *line*, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

This is an overloaded function.

Creates and returns a QPolygonF object that is a copy of the given *polygon*, mapped into the coordinate system defined by this matrix.

This is an overloaded function.

Creates and returns a QPolygon object that is a copy of the given *polygon*, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

This is an overloaded function.

Creates and returns a QRegion object that is a copy of the given *region*, mapped into the coordinate system defined by this matrix.

Calling this method can be rather expensive if rotations or shearing are used.

This is an overloaded function.

Creates and returns a QPainterPath object that is a copy of the given *path*, mapped into the coordinate system defined by this matrix.

Creates and returns a QRectF object that is a copy of the given *rectangle*, mapped into the coordinate system defined by this matrix.

The rectangle's coordinates are transformed using the following formulas:

x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy

If rotation or shearing has been specified, this function returns the *bounding* rectangle. To retrieve the exact region the given *rectangle* maps to, use the mapToPolygon() function instead.

See also mapToPolygon() and Basic Matrix Operations.

This is an overloaded function.

Creates and returns a QRect object that is a copy of the given *rectangle*, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

Creates and returns a QPolygon representation of the given *rectangle*, mapped into the coordinate system defined by this matrix.

The rectangle's coordinates are transformed using the following formulas:

x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy

Polygons and rectangles behave slightly differently when transformed (due to integer rounding), so `matrix.map(QPolygon(rectangle))` is not always the same as `matrix.mapToPolygon(rectangle)`.

See also mapRect() and Basic Matrix Operations.

Resets the matrix to an identity matrix, i.e. all elements are set to zero, except `m11` and `m22` (specifying the scale) which are set to 1.

See also QMatrix(), isIdentity(), and Basic Matrix Operations.

Rotates the coordinate system the given *degrees* counterclockwise.

Note that if you apply a QMatrix to a point defined in widget coordinates, the direction of the rotation will be clockwise because the y-axis points downwards.

Returns a reference to the matrix.

See also setMatrix().

Scales the coordinate system by *sx* horizontally and *sy* vertically, and returns a reference to the matrix.

See also setMatrix().

Sets the matrix elements to the specified values, *m11*, *m12*, *m21*, *m22*, *dx* and *dy*.

Note that this function replaces the previous values. QMatrix provide the translate(), rotate(), scale() and shear() convenience functions to manipulate the various matrix elements based on the currently defined coordinate system.

See also QMatrix().

Shears the coordinate system by *sh* horizontally and *sv* vertically, and returns a reference to the matrix.

See also setMatrix().

Moves the coordinate system *dx* along the x axis and *dy* along the y axis, and returns a reference to the matrix.

See also setMatrix().

Returns the matrix as a QVariant.

This function was introduced in Qt 4.2.

Returns true if this matrix is not equal to the given *matrix*, otherwise returns false.

Returns the result of multiplying this matrix by the given *matrix*.

Note that matrix multiplication is not commutative, i.e. a*b != b*a.

This is an overloaded function.

Returns the result of multiplying this matrix by the given *matrix*.

Assigns the given *matrix*'s values to this matrix.

Returns true if this matrix is equal to the given *matrix*, otherwise returns false.

The qFuzzyCompare function is for comparing two matrices using a fuzziness factor.

Returns true if *m1* and *m2* are equal, allowing for a small fuzziness factor for floating-point comparisons; false otherwise.

This function was introduced in Qt 4.6.

This is the same as *matrix*.map(*point*).

See also QMatrix::map().

Same as *matrix*.map(*point*).

See also QMatrix::map().

This is the same as *matrix*.map(*line*).

See also QMatrix::map().

This is the same as *matrix*.map(*line*).

See also QMatrix::map().

This is the same as *matrix*.map(*polygon*).

See also QMatrix::map().

This is the same as *matrix*.map(*polygon*).

See also QMatrix::map().

This is the same as *matrix*.map(*region*).

See also QMatrix::map().

This is the same as *matrix*.map(*path*).

See also QMatrix::map().

Writes the given *matrix* to the given *stream* and returns a reference to the stream.

See also Serializing Qt Data Types.

Reads the given *matrix* from the given *stream* and returns a reference to the stream.

See also Serializing Qt Data Types.

X